Twenty years from now you will be more
disappointed by the things that you didn’t do than
by the ones you did do. So throw off the bowlines.

Sail away from the safe harbor. Catch the trade
wind in your sails. Explore. Dream. Discover.

-H. JACKSON BROWN
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I1I. Astronomical Research with a
Large Reflecting Telescope

The ultimate objective in the instrumentation of an astronomical
satellite would be the provision of a large reflecting telescope, equipped
with the various measuring devices necessary for different phases of
astronomical research. Telescopes on earth have already reached the limit
imposed by the irregular fluctuations in atmospheric refraction, giving rise
to "bad seeing”. It is doubtful whether a telescope larger than 200 inches

HISTORICAL POINT #1 would offer any appreciable advantage over the 200 inch instrument.

Moreover, problems of flexure become very serious in mounting so large
N O M AT -I— E R an instrument. Both of these limitations disappear in a satellite observatory,
and the only limitations on size seem to be the practical ones associated

W H AT Y O U C O M E with sending the equipment aloft.
While a large reflecting satellite telescope (possibly 200 to 600
U P W | T H / I_Y M A \I inches in diameter) is some years in the future, it is of interest to explore

the possibilities of such an instrument. It would in the first place always

S P | T Z E R A I_ R E A D Y have the same resolving power, undisturbed by the terrestnal atmosphere.

_ If the figuring of the mirror could be sufficiently accurate, its resolving
T H O U G H T O I: | power would be enormous, and would make it possible to separate two
objects only .01" of arc apart (for a mirror 450 inches in diameter); an
object on Mars a mile in radius could be clearly recorded at closest
opposition while on the moon an object 50 feet across could be detected
with visible radiation. This is at least ten times better than the typical
performance of the best terrestnal telescopes. Moreover, in ultra-violet
light the theoretical resolving power would of course be considerably
greater; ideally an object 10 feet across could be distinguished on the moon

Spitzer, 1946
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COSMOLOGY, LARGE SCALE
STRUCTURE, AND DARK MATTER

Greatly expand the volume for cross-calibration of standard
candles (e.g. Cepheids), and bring the uncertainty in Hg to
< 1% (Scowcroft)

Direct detection of the expansion of the universe
(Shiminovich, O'Meara)

The power spectrum, thermal, and ionizing history of the IGM
from 0 <z < 1.5, Helium reoinization (O'Meara, McCandliss)

The evolution of the escape of ionizing radiation over cosmic
time (McCandliss)



KEeP THE LUV IN LUVOIR!

Look Back Time (Gyr)

T= 1.3 33 4962 76 10.1 11.2
Redshift
= 0.1 030507 10 2.0 29
. | | | | |
10() 20 | 1
D 77
%D ]04 » ~~
= e o
o 3_,»' = 24 .
S0 2 7 ) dz=24-34 R 64
-8 10 Ve dz=18-23 _ . =26 2
e ' dz=08-12 _ .. _ = 16
dz=06~08 _ . ... >
-g 100 dz=04-056 E 28 !
o~ dz=02-04
% 10—2 dz=00-02 30
P ) 1000 2000 3000 4000
16 18 20 22 24 26 28 Wavelcash )
IFEFU=1x10"ergscm s’ A

1500%(1+2)




CYNWID S

=S AN

D GALAXY

-VOLUTION



GALAXIES AN

D GALAXY

-VOLUTION

Understand structure formation and evolution in massive galaxies, and

poushing into the central 1 kpc over cosmic time (Whitaker)



GALAXIES AND GALAXY EVOLUTION

Understand structure formation and evolution in massive galaxies, and
poushing into the central 1 kpc over cosmic time (Whitaker)

Dynamical masses for black holes in AGN, and the SMBH mass distribution
(Peterson, Matsuoka)



GALAXIES AND GALAXY EVOLUTION

Understand structure formation and evolution in massive galaxies, and
poushing into the central 1 kpc over cosmic time (Whitaker)

Dynamical masses for black holes in AGN, and the SMBH mass distribution
(Peterson, Matsuoka)

Map the CGM in 2-D using quasars AND galaxies as background sources
(Tumlinson, Matsuoka, O'Meara)



GALAXIES AND GALAXY EVOLUTION

Understand structure formation and evolution in massive galaxies, and
poushing into the central 1 kpc over cosmic time (Whitaker)

Dynamical masses for black holes in AGN, and the SMBH mass distribution
(Peterson, Matsuoka)

Map the CGM in 2-D using quasars AND galaxies as background sources
(Tumlinson, Matsuoka, O'Meara)

The first quasars (Matsuoka)



GALAXIES AND GALAXY EVOLUTION

Understand structure formation and evolution in massive galaxies, and
poushing into the central 1 kpc over cosmic time (Whitaker)

Dynamical masses for black holes in AGN, and the SMBH mass distribution
(Peterson, Matsuoka)

Map the CGM in 2-D using quasars AND galaxies as background sources
(Tumlinson, Matsuoka, O'Meara)

The first quasars (Matsuoka)

The galaxy luminosity function from -16 < M < -10, and direct observations
of the gas and dust in the first, most metal-poor galaxies (Finkelstein)



GALAXIES AND GALAXY EVOLUTION

Understand structure formation and evolution in massive galaxies, and
poushing into the central 1 kpc over cosmic time (Whitaker)

Dynamical masses for black holes in AGN, and the SMBH mass distribution
(Peterson, Matsuoka)

Map the CGM in 2-D using quasars AND galaxies as background sources
(Tumlinson, Matsuoka, O'Meara)

The first quasars (Matsuoka)

The galaxy luminosity function from -16 < M < -10, and direct observations
of the gas and dust in the first, most metal-poor galaxies (Finkelstein)

Observing structures down to 0.0003L* (Postman)
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STARS, STELLAR EVOLUTION, AND THE
LOCAL UNIVERSE

Characterize the ftirst stars, supernovae, and metals in

the universe via UV spectra of the most metal poor
stars (Roderer)



Region where a 10-meter telescope could observe
giants with high spectral resolution in the UV
(~ 20 kpc; or dwarfs to ~ 4 kpc)

- most of the inner halo
- numerous stellar streams
- dozens of globular clusters

| ¥ ey « ¥ -
L o3 A
. P <G L s

. Region where HST can observe giant
*  with high spectral resolution in the UV
(~ 500 pc; or dwarfs to ~ 100 pc)

A ~10-meter space telescope could observe the UV spectrum
of nearly any star whose optical spectrum is accessible
today from the ground.

\ (except in regions of high extinction)
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STARS, STELLAR EVOLUTION, AND THE
LOCAL UNIVERSE

Characterize the first stars, supernovae, and metals in the universe via
UV spectra of the most metal poor stars (Roderer)

Very early/very late time observation of SNe for unigue signatures of
the progenitor appear (Graham)

Robust exploration of the environments where planets form (France,

Pascucci, Fleming)

Measure protostellar jet mass tlux, collimation, rotation, interaction.
Measure the launching and mass flux of disk winds, and mass flows in

the inner disk (Schneider, Herczeg, Gémez de Castro)

The extinction law from UV to IR in the Galaxy (Gdmez de Castro)
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Perform a measurement or make a discovery that has
never been made

Hard to predict

A different, operational definition: turn a program that
requires > 1000 hours into a routine one
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WHAT DOES IT MEAN TO "DO THE
IMPOSSIBLE"?

All the time!

6-10 times
per year.

You might do it. N Ope I

Once or twice.

>

1 10 100 1,000 10,000

Time in hours
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POINT SOURCE UV SPECTROSCOPY

Redshift path for Lyman Alpha

LUVOIR FUV < 22
HST FUV < 18.5

Number of Quasars
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Redshift path for NeVIIl

LUVOIR FUV < 22
HST FUV < 18.5

Number of Quasars
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IMPLICATIONS FOR APERTUR

A science case “requiring” 10+ meter apertures might
be met with the retort “we can do that with 6 meters!”

Sometimes this is right! You can, but you probably

Smaller apertures take longer times, reducing the
number of large investments you can make, shrinking
the total discovery space
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IMPLICATIONS FOR APERTUR

We shoula be comparing raw capacity when we
compare apertures

We should compare total science programes,

considered holistically, bound by the ultimate limitea
resource: mission litetime



DOING THE IMPOSSIBLE
WITH LUVOIR



MISSION IMPOSSIBLE #1

imaging the CGM at z<2 to unravel galaxy fueling and teedback

log(Surface Brightness) [photons s em-

Corlies & Schiminovich (2016)

2 sr-‘l]

10 meter telescope

15 minutes

40 hours

. . .
-9 -3 -1 1 3 <

log(Surface Brightness) [photons s cm™ sr']

500 hours I

3 hours

4 meter telescope



MISSITON

IMPOSSIBLE #2

Star formation histories and the IMF
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MISSION IMPOSSIBLE #3

Probe star formation and dark matter in the darkest halos -
hundreds of faint MW satellites to be discovered by LSST.

LSST will reach ~100%

“completeness” for the
faintest dwartfs out to 400 kpc.

Measuring their IMF
requires reaching 3 mag
below main sequence TO.

12 m LUVOIR can do this at
500 kpc

4 m reaches ~200 kpc, but
this is 50x less volume and
still inside Ry;.




MISSION IMPOSSIBLE #3

Probe dark matter in the darkest halos - hundreds ot
faint MW satellites to be discovered by LSST.

10° 10° 10° 10° 10° .
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10 cm s
0.2 mph planets
100 cm s planets in
2.2 mph disks
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.......... Tkms | 55 g | DM dynamics
2200 mph % g | indwarf sats.
Velocity dispersions are 1-5 km/s. 4 |3Dmotions of
e 100 km s 1| @ all LG
Measure DM potential in most DM- o galaxies
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What is the DM?



THESE WILL ONLY GET BETTER. LUVOIR CAN
ECLIPSE THEM, AND DEMAND THEIR SUCCESSORS
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MAY NOT KNOW
WHAT THE MOST
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SCIENCE OF 2035 IS

Scientific Uses
of the

Large

Space Telescope

AD HOC COMMITTEE ON THE LARGE SPACE TELESCOPE
SPACE SCIENCE BOARD
NATIONAL ACADEMY OF SCIENCES-NATIONAL RESEARCH COUNCIL

NATIONAL ACADEMY OF SCIENCES
WASHINGTON, D.C.
1969
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TWO THOUGHTS

* 1) We don’t know the future

We should only consider a LUVOIR that can also do
as of yet unknown science. Be flexible and powerful.

* 2) We can't read minds

We must make a serious effort to reach out and listen to the
full community, and give them the tools to think big.
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THERE IS UNPRECEDENTED JOINT
DISCOVERY SPACE

LSST
TMT/EELT/GMT
SKA

ALMA

Many others



Let’s use both, each at what it is best for

At 1.5 pm (H), a diffraction-limited 30m will reach the same spatial resolution as
a space-based 10m at 0.5 ym.

Sky backgrounds prevent ground-based ELTs from applying their spatial

resolution at the faintest desirable limits.

ELTs excel at:
-high res imaging on bright sources
-IR spectroscopy in atmospheric

transmission windows
- high resolution optical spectroscopy

LUVOIR excels at:
- deep/wide imaging at all wavelengths

- low-res/2D spectra at all wavelengths
- astrometry, high contrast (stable PSF)
- anything requiring the UV

They complement each other for:
- LUVOIR detection in imaging, ELT
spectroscopy for stars and galaxies
- multiphase gas diagnostics at all z

Hubble
UDF

A

] ] ] ] I
Time to S/N =10
100 hr -
10 h At AB~30, the ELT requires a full
Ohri- night, or about 5-10 times longer
to achieve same S/N.*
1 hri-
10 min - P2
1 min}{- 7
10 sec - -
1 seC— -
e At AB~32, LUVOIR is at the ~10
hour level while ELT observations
become prohibitive.
1 1 1 1 I
20 25

AB Magnitude

Sun at
| Mpc

30

LMC at N1
z=6 10 Mpc

/

35

*E-ELT ETC



-MERGING INSTRUMENT THEMES

UVOIR imaging with as wide a FOV as possible

Low (R~100) to moderate (R~5,000) UVOIR MQOS or IFU
High (R>25,000) point source UVO spectrograph

FUV spectroscopic capability (Lyman edge)



ALSO WORTH CONSIDERING

Polarimetry
Fast timing
Ultra-precise astrometry
Laser comb

Energy resolving detectors



WHAT COULD WE DO IF W

u-arcsecond astrometry
S/N 10,000 at R=100,000
Photon counting at extremely high rates

R=1,000,000 spectroscopy

H A

D
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SUMMARY

We have a huge parameter space in COR science with
LUVOIR, some of it not yet known

Much of it is revolutionary, and requires a revolution

We have a lot of work to do, and we should not go it
alone

't's time to build the tools, make the plots, and write
the story



“It's kind of fun to do the impossible”

~-WALT DISNEY



